
Recitation 2.1
March 12, 2025

Check off:
Clone your project and Run :

Project 2 : N body simulation

Ray Tracing

Elements

1. Origin (O)

2. Eye location (e)

3. Image Plane (can be

inclined to the eye)

4. Plane orthonormal vectors

(u and v)

5. Sphere : radius and center

6. Output Image is a

resolution x resolution

(square) image of pixels

7. Pixels have a fixed width,

given by

viewport/resolution

Bounding Boxes

3 coordinates (2 spaces)
● X, Y, Z of the spheres

● X, Y, Z of the coordinates occurring on the plane (same units as spheres)

● I, J of the image (labeled x, y in the code)

How do we get the pixel value at I J? (initially)
● Given an image pixel location (I, J)

● Find the point in the 3D plane that corresponds (calculate ray from the eye)

● Determine if the ray hits a sphere
○ Complicated math

A different way (better?)
● Given a sphere location, get 8 points making a bounding cube

○ Ex: Given r and (x, y, z) some corners are (x+r, y+r, z+r), (x-r, y-r, z-r), (x+r, y-r, z-r)

● Project those points onto the plane

● For the bounding box of the cube in the image, check if the points

intersect the sphere
○ If so, color the pixel

r

Project the cube onto the plane
● Given points a, b find where they intersect a plane through the origin with

orthonormal vectors u, v

● 𝑎𝑏 = 𝑏 + 𝑐 ∗ റ𝑎 − 𝑏 for any number c

● Plane = 𝑡𝑢 + 𝑠 റ𝑣 for any numbers t, s
○ Also given by 𝑝 ∙ 𝑤 = 0 where 𝑤 = 𝑢 × റ𝑣

● 3 unknowns, 3 equations (one each for x, y, z components)

● Solve to get the 8 points and get a bounding box of those 8 points

● You can then have a bigger bounding box with just 4 points

Vector Algebra for Rendering Explained

Fix : P = e +k (e-x1)

Other Possible Render Optimizations
● Avoid redundancy in light diffusion on material calculations (some part is

fixed for each sphere)

● Use quicksort or other efficient sorting algorithms to sort spheres

● Pre-compute origin_to_pixel values. (Identifying large amount of work

happening on adjacent values can then be vectorized)

Some Possible Simulate Optimizations
● Redundant collision checks and force of gravity computations

● Try having a bounding box for collision of a sphere over an interval – If

nothing intersects this box, the sphere does not collide with anyother

sphere for the current iteration of simulation

Parallelization
● Render – Easy to parallelize pixel wise computation (the majority of work)

● Simulate – Can have a race condition!

Force calculation without redundancy
Force calculation with redundancy

Parallelization of Simulate
● Iteration space of :

<- j = i to N-1

i
=

 0
 t
o

 N
-1

 -
>

Triangles can be run in parallel.

Rectangle should be run

before/after the triangles.

Parallelization of Simulate - 2

When executing for the

rectangle, it can further be

parallelized (diagonally opposite

ones execute together)

Project 2 Guidelines
● Tier for Guaranteed B in Beta : 47

● Your code must match the behavior of the original code exactly!
○ Beware of the lack of floating point associativity!

○ No -ffast-math

● No determinacy races (including benign races)
○ Cilksan should report no races

● Intrinsics for atomic operations and locks are not allowed
○ Ex. the compare-and-swap intrinsic

Check off:
Clone your project and Run :

	Slide 1: Recitation 2.1
	Slide 2: Check off:
	Slide 3: Project 2 : N body simulation
	Slide 4: Ray Tracing
	Slide 5: Elements
	Slide 6: Bounding Boxes
	Slide 7: 3 coordinates (2 spaces)
	Slide 8: How do we get the pixel value at I J? (initially)
	Slide 9: A different way (better?)
	Slide 10: Project the cube onto the plane
	Slide 11: Vector Algebra for Rendering Explained
	Slide 12: Other Possible Render Optimizations
	Slide 13: Some Possible Simulate Optimizations
	Slide 14: Parallelization
	Slide 15: Parallelization of Simulate
	Slide 16: Parallelization of Simulate - 2
	Slide 17: Project 2 Guidelines
	Slide 18: Check off:

